logo
Home News

Temperature Humidity Test Chamber Manufacturing Process !

China GUANGDONG KEJIAN INSTRUMENT CO.,LTD certification
China GUANGDONG KEJIAN INSTRUMENT CO.,LTD certification
Kejian Universal Testing Machine quality is the best,after-sale service is also great.

—— Oscar Vargas

Paper Testing Machine is one of the best product.

—— Kritsana Praikongkadhrama

I'm Online Chat Now
Company News
Temperature Humidity Test Chamber Manufacturing Process !
Latest company news about Temperature Humidity Test Chamber Manufacturing Process !
The manufacturing process of a Temperature Humidity Test Chamber (THC) is a systematic, multi-stage workflow that integrates mechanical engineering, electrical control, thermal dynamics, and precision assembly. It focuses on ensuring the chamber’s core performance—such as temperature/humidity control accuracy, environmental uniformity, and operational safety—while meeting industry-specific standards (e.g., ISO 10281, ASTM D4359). Below is a detailed breakdown of the key manufacturing stages:

1. Pre-Manufacturing: Design & Material Sourcing

This stage lays the foundation for the chamber’s performance and reliability, requiring close collaboration between design engineers, material specialists, and quality teams.

1.1 Technical Design & Simulation

  • Requirements Analysis: First, engineers clarify the chamber’s target specifications based on customer needs or industry standards, including:
    • Temperature range (e.g., -70°C to +180°C for standard models, -196°C for cryogenic models).
    • Humidity range (e.g., 10%–98% RH, or ≤5% RH for low-humidity versions).
    • Chamber volume (benchtop 50L, floor-standing 1000L, or walk-in 50m³).
    • Special functions (e.g., UV irradiation, salt spray, vacuum).
  • 3D Modeling & Thermal Simulation: Using software like SolidWorks, AutoCAD, or ANSYS, engineers design the chamber’s structure (outer shell, inner liner, insulation layer) and simulate:
    • Thermal uniformity: Ensuring no “hot spots” or “cold zones” via airflow duct design (e.g., optimizing fan placement and baffle angles).
    • Heat/cold retention: Calculating the thickness of insulation materials (e.g., polyurethane foam, vacuum panels) to minimize energy loss.
    • Humidity distribution: Simulating water vapor diffusion to avoid condensation on sample surfaces.
  • Control System Design: Develop the PLC (Programmable Logic Controller) program and HMI (Human-Machine Interface) to support multi-segment test cycles, data logging, and safety alarms.

1.2 Material Sourcing & Quality Inspection

Only high-performance, corrosion-resistant, and temperature-stable materials are selected to withstand extreme test environments:
Component Material Selection Reason for Choice
Inner Liner 304/316 Stainless Steel Resists rust, moisture, and chemical corrosion (critical for high-humidity/salt spray tests).
Outer Shell Cold-rolled steel (with powder coating) High structural strength; powder coating (epoxy resin) prevents external rust.
Insulation Layer Polyurethane foam (density ≥40kg/m³) or vacuum insulation panels Low thermal conductivity (≤0.022 W/(m·K)) to maintain stable internal temperatures.
Cooling System Copper tubes (for refrigeration circuits) + eco-friendly refrigerants (R410A/R513A) Copper has high thermal conductivity; refrigerants comply with environmental standards (low GWP).
Humidification System Titanium alloy evaporator or stainless steel water tank Titanium resists scale buildup; stainless steel ensures water cleanliness (critical for pharmaceuticals).
Fans & Motors High-temperature-resistant DC brushless motors Operate stably at +180°C; low noise and long lifespan.

2. Core Component Manufacturing

Key subsystems (e.g., refrigeration, humidification, air circulation) are pre-assembled and tested individually to ensure they meet performance benchmarks before integration.

2.1 Refrigeration System Manufacturing (Critical for Temperature Control)

The refrigeration system is responsible for cooling the chamber to low temperatures (down to -196°C for cryogenic models) and works with heaters to adjust temperature dynamically.
  • Compressor Assembly: Select scroll compressors (for standard models) or cascade compressors (for ultra-low temperatures) and assemble them with copper tubes (brazed via nitrogen protection to avoid oxide buildup in tubes).
  • Condenser & Evaporator Production:
    • Condenser: Bend copper tubes into a finned structure (aluminum fins for heat dissipation) and pressure-test (1.5x working pressure) to detect leaks.
    • Evaporator: For low-temperature models, use spiral copper tubes to enhance heat exchange efficiency; coat with anti-frost materials to prevent ice buildup.
  • Refrigerant Charging: Inject the precise amount of refrigerant (e.g., R410A) into the closed circuit and test for leaks using a helium leak detector (leak rate ≤1×10⁻⁹ Pa·m³/s).

2.2 Humidification & Dehumidification System Manufacturing

This system controls humidity by adding or removing water vapor:
  • Humidifier Production: For steam humidifiers, fabricate stainless steel heating tubes (with anti-scale coatings) and assemble them into a water tank. Test steam output rate (e.g., 2kg/h for 1000L chambers) and ensure uniform vapor distribution.
  • Dehumidifier Production: Use refrigeration dehumidifiers (cooling coils to condense moisture) or desiccant dehumidifiers (silica gel for low-humidity models). Test dehumidification efficiency (e.g., reducing humidity from 98% to 10% RH in ≤1h).

2.3 Air Circulation System Manufacturing

Uniform airflow is essential for consistent temperature/humidity across the chamber:
  • Fan & Duct Production: Mold ABS plastic ducts (or stainless steel for high temperatures) into a “circular airflow” design. Install brushless fans and adjust blade angles via simulation to ensure airflow velocity (0.5–1.5 m/s) and uniformity (temperature difference ≤±2°C).
  • Baffle Installation: Attach adjustable stainless steel baffles to ducts to redirect airflow and eliminate dead zones (e.g., near the chamber door or
Pub Time : 2025-09-19 21:23:43 >> News list
Contact Details
GUANGDONG KEJIAN INSTRUMENT CO.,LTD

Contact Person: Miss. Silivia Zhang

Tel: 86-13925519875

Fax: 86-0769-28638013

Send your inquiry directly to us (0 / 3000)